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Foreword

Dear members of the lot sizing community,

Let’s start with the bad news. Due to obvious reasons, we will hold this 2021 edition
of the International Workshop on Lot Sizing on-line. This means that we will not
have any boat cruises, guided museum outings, city tours or visits to a whiskey dis-
tillery, beer brewery, or port cellar. We will not be able to sit all together and watch
the presentations in a little castle, near the beach or even in a regular university
aula. That is, of course, unfortunate.

On the upside, we have a great program with 15 excellent presentations, all on
lot-sizing. As the previous 2020 on-line edition has shown, this still allows to have
interesting discussions and fruitful exchanges (you just need to unmute your mi-
crophone). And that is of course what it is all about. Moreover, you won’t have
to make any long journey to participate, and you can enjoy this workshop in the
comfort of your own home or office. We would like to thank the organisations listed
on the next pages who are supporting this workshop, and finally, we hope you have
a great workshop.

Raf and Matthieu.
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Vasconcelos Nascimento 15

9h30 - 10h Break

10h - 11h Session 2: Exact approaches for lot sizing problems

Chair: Christian Almeder

A Benders decomposition approach to the lot-sizing and market selection problem
Wilco van den Heuvel, Semra Ağralı, Zeki Caner Taşkın 20
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Abstract

In this study, we deal simultaneously with lot-sizing and cutting stock
decisions in an integrated way, so as to capture the interdependency be-
tween these decisions in order to obtain a better global solution. For
this, a generalized 3-level integrated problem (G3ILSCS ) proposed in
the literature is extended to take into account other relevant decisions of
the supply chain. The extensions consist of the supplier selection of the
raw materials used in the cutting process and the distribution of the final
products from the production plant to a warehouse. To solve the inte-
grated problem, a hybrid heuristic is proposed aiming to overcome the
difficulties present in the integrated problem, mainly comprising the high
number of variables, the multi-level structure, and the integrality require-
ments. The hybrid method combines two decomposition approaches, the
column generation and the relax-and-fix procedures, in each iteration of
the algorithm. The models and solution approaches are analyzed in an
extensive computational study aiming to evaluate the impact of incor-
porating other decisions of the supply chain into the integrated problem.
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Introduction

The idea of integrating processes in a production plant is to take into account,
simultaneously, the decisions related to the problems involved so as to capture the
interdependency between the decisions in order to obtain a better global solution.
The manufacturing setting addressed in this study has its production processes
linked to the cutting of raw materials (objects) and the production planning of end
products (final products). In these industries, objects of large sizes are kept in stock
to be cut later into smaller pieces of different sizes, using cutting patterns, in order to
meet internal demand. These pieces then go to downstream levels of the production
plant in order to produce and assemble the final products. The production planning
of final products takes into account the tradeoff between setup and inventory holding
costs to meet the clients’ demand, considering capacity limitations. Therefore, it is
necessary to plan the acquisition, production, and cutting of these objects, as well
as the production of final products, in order to minimize the negative effects of these
processes, which can be seen as the waste of material, delays in downstream levels,
high costs, among others. These two problems are known in the literature as the
cutting stock problem and the lot-sizing problem, respectively ([6, 3, 4, 1]).
A generalized 3-level integrated problem, G3ILSCS, proposed in [5], is extended and
computationally analyzed considering other relevant decisions/levels of the supply
chain. The first extension consists of an alternative means to the acquisition of ob-
jects, besides producing these objects in the company, and comprehends the supplier
selection of objects used in the cutting process. In this alternative level, suppliers
can also provide the inputs (objects) to the production plant. The other extension
addresses an additional level after the production of final products, related to the
distribution of the final products from the production plant to a warehouse. The
problem with all these features comprise an 4-level integrated lot-sizing and cutting
stock problem with supplier selection and distribution (G4ILSCS ).

Mathematical Models and Solution Methods

The G3ILSCS model consists of a production environment composed of three levels
and multi-periods in a deterministic setting. Level 1 corresponds to the production
planning of objects, that have to be produced considering a capacitated environment
in order to fulfill the downstream level (level 2). Level 2 is associated with the cut-
ting process, in which the produced objects are cut into pieces according to cutting
patterns [2] by a cutting machine with limited resources. The cut pieces can be used
as components to assemble the final products or directly as final products. It is at
level 3 that the production of the final products occurs and the independent demand
for final products has to be met in each time period. The link between the different
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time periods is provided by inventory at each level. There is a bill-of-material re-
lationship, for which the dependent demand of final products triggers a dependent
demand for pieces, and indirectly, for objects. Therefore, the decisions of the 3-level
integrated problem determines simultaneously a production planning that defines for
every time period: the production quantities for products and objects and the cut-
ting patterns, with corresponding frequencies, considering limited resources, while
searching for a global optimal minimal solution to the 3-level integrated problem.
In the G4ILSCS, an alternative means to the acquisition of objects needed in the
cutting process is considered, i.e., objects can be produced at level 1 of the produc-
tion plant, as well as be purchased from external suppliers at level 1A. The supplier
selection at level 1A takes into account a set of suppliers offering different types of
objects, which can be purchased considering fixed and variable costs, proportional to
the quantity purchased. The price of objects does not vary according to the number
of objects ordered, i.e., there is no discount rate. In this integrated approach, the
supplier selection decisions define the number of objects to be purchased considering
the different supplier costs, which allied to an optimized production planning of the
cutting process, and the production of the final products and objects, aims to reduce
the total costs in the integrated problem.
The other extension modeled in the G4ILSCS manages the distribution of final
products. Level 4 is responsible for the distribution costs incurred from shipments
between the production plant and the warehouse. The distribution decisions are
related to the load/arrangements of final products into vehicles, i.e., they are asso-
ciated with the number of vehicles needed to transport the final products, hence,
such decisions are directly linked to the production lot-sizing decisions of final prod-
ucts. In this integrated problem, the demand of final products is shifted from the
production plant to the warehouse and in both sites, there is the possibility of in-
ventory. Inventory at the production plant arises from cargo consolidation on the
vehicles, whereas at the warehouse, inventory is addressed to keep the final products
in stock in order to meet the clients’ orders. Therefore, the distribution decisions
define the number of vehicles utilized in the transport of final products and the
transportation costs incurred in each time period of the planning horizon, i.e., this
problem combines the lot-sizing and cutting stock decisions with vehicle loading
decisions.
Considering that the problems addressed in this study are classified as NP-hard, we
proposed a hybrid heuristic solution method to solve the integrated problem, aiming
to overcome the difficulties, comprising the multi-level structure, the hight number
of the variables, and integrality requirements. The goal of the hybrid heuristic is
to provide a good trade-off between solution quality and computational effort while
solving the integrated problem. The column generation procedure is used as a first
step to generate an initial matrix of columns (cutting patterns for cutting the objects
into pieces and cargo configurations for loading the final products into de vehicles)
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at levels 2 and 4 of the integrated problem. After that, the column generation is
applied in each step of the relax-and-fix procedure in the hybrid heuristic, aiming
to find more attractive columns, for cutting patterns and cago configurations, while
the hybrid heuristic searches for a feasible solution to the integrated problem.
The models and solution methods are analyzed in an extensive computational study.
Therefore, the main objective of this study is to evaluate the impact of incorporating
levels of the supply chain into the integrated problem, as well as assess the perfor-
mance of the hybrid approach in different environments when solving the 3-level
integrated lot-sizing and cutting stock problem with supplier selection and distribu-
tion decisions.
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Abstract

This study addresses a problem that integrates decisions on sup-
plier selection, multi-stage assembly production, and demand fulfillment
with multiple customers and backlogging. This problem is motivated by
a case of a manufacturing company that produces refrigeration equip-
ment. To avoid using backlogging penalties, traditionally used in cost-
minimization formulations, which involve intangible costs such as loss
of customer satisfaction, we propose models that optimize service levels
in the form of minimum backlog and maximum fill rates. We use bud-
getary constraints to keep operational costs under a limit. The results
show that the proposed models bring improvements to the service levels,
and they can also be used to enforce service equity among customers.
We also propose an adaptation of our model that considers customer and
product importance when optimizing demand fulfillment.
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Introduction

In this article, we approach the Integrated Procurement and Lot-Sizing Problem
(IPLSP) focusing on demand fulfillment decisions. This approach differs from the
traditional models found in the literature since our proposed models optimize service
level objectives while keeping the costs, which are usually minimized, under a limit.
The motivation of this work is a case presented by a refrigeration equipment man-
ufacturer, which assembles products with extensive and complex bill-of-materials,
consisting of components that are produced in house and others that are purchased
from third-party suppliers. At the same time, there is a need to fulfill the demand
from multiple customers while working within set and restricted budgets.
Usually, production and procurement decisions in a manufacturing plant are made
separately. However, the literature shows that integrating both problems leads to
more cost efficient solutions, especially by lowering the costs involved in the purchase
of raw materials [3]. Aside from this integration, we treat the demand individually
by customer, instead of an aggregated value. This turns demand fulfillment deci-
sions into a variation of the one-warehouse multi-retailer problem [6] in which each
customer has its associated demand and backlog, although we do not manage their
inventory and cannot make shipments in advance.
Due to an inherent difficulty in calculating inventory shortage penalties [7], espe-
cially when different customers with different profiles are involved, we avoid using
backlogging costs and propose models that minimize the total backlog, and max-
imize fill rates. Fill rates are indicators that measure the percentage of demand
fulfilled in time and can be calculated in several ways, either globally or for indi-
vidual products [5]. Since our model involves different customers, we also present
functions that maximize the worst individual cases, which aim at enforcing an equity
between service levels between customers.

Problem Definition and Modeling

In order to solve the IPLSP, we propose a Mixed Integer Programming (MIP) for-
mulation for it. Since the production process involves the assembly of several com-
ponents, we use a multistage lot-sizing model, as presented by [1]. The purchase of
components is modeled as a supplier selection problem with delivery lead-times and
total quantity discounts, which are given due to the fact that material is usually
bought in large quantities [4]. With the demand separated by customers, we use the
formulation from [2], with variables indicating how much is sent to each customer
per period and their associated backlogs. Also, orders can be partially fulfilled,
allowing the model to prioritize certain demands when optimizing service levels in
periods of limited resource availability.
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In a practical case, production and procurement decisions are made in different time
scales (e.g., weeks and months) therefore we divide our planning horizon in macro-
periods for the supplier selection variables and in micro-periods for the production
and demand fulfillment variables.
The first model, MIPTC is a traditional approach that minimizes the total costs
from the IPLSP, including the backlog costs. The second, MIPB, minimizes the
total backlog, while keeping all costs under a budget. In our modeling, a value is
made available at the start of each macro-period, and the amount that is not spent
can be carried to the following period without any loss.
The other models aim at maximizing fill rates, which are identified in the literature
by β. Mathematically, a fill rate is calculated using β = 1 − backorder

demand
, and its

variations are obtained depending on which demand is considered. The Global Fill
Rate (β) uses the entire demand, the Customer Fill Rate (βc) calculates one for each
customer and takes the minimum value among them, while the Customer-Product
Fill Rate (βcj) does the same for each customer and product combination.
Given this definition, we propose models MIPG, MIPC and MIPCP that maximize,
β, βc and βcj, respectively. Note that MIPC and MIPCP are Maximin type mod-
els. Also, additional constraints are used to obtain the backorder values from the
backlogging variables.

Experimentation Results

Several computational experiments were carried in order to evaluate the performance
and solutions of the proposed models. Since our datasets, which included data from
the manufacturer, do not contain budget values, we used the costs obtained by
solving MIPTC (minus the backlogging costs) as a benchmark. For all models,
a posteriori calculations were done in order to obtain the fill rate values in each
solution, so they could be compared.
In our first analysis, we found out that our service level based models were able
to improve their respective indicators when compared to MIPTC , even though the
solutions had the same budget to work with. For example, in one of our datasets,
MIPC was able to find an improved value of βc than MIPTC in all instances. While
these results were more evident on the fill rate models (especially the Maximin ones),
these improvements were less frequent within the MIPB solutions.
Regarding the trade-offs between fill rates, we showed that some solutions of MIPG
had low values of βc and βcp, meaning that, when optimizing the global demand
fulfillment, some demands are left unfulfilled for longer periods of time. On the
other hand, MIPC and MIPCP obtain βc and βcp values, respectively, comparable
to β without deteriorating the latter too much.
Lastly, we did some experimentation that showed that these conclusions also apply
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to cases with more strict budgets and lost sales instead of backlogging, as well as
proposing additional models that maximize the weighted sums of Customer and
Customer-Product Fill Rates. These models are relevant in cases when customers
or products have different strategical importance to the manufacturer and it needs
to be taken into consideration when making the demand fulfillment decisions.
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Abstract

Many multinational companies require multiple plants to meet the
worldwide demand for their products. Globalization allows such compa-
nies to locate their facilities all over the globe, in search of local infras-
tructure and resources that minimize production costs. In this context,
the use of multiple plants in different locations allows them to meet
demands but raises the problem of determining which facilities should
attend the given demand. This case-oriented research presents a lot
sizing model for an aluminum beverage packaging company with sev-
eral plants, a diversified portfolio, internal holding, and the possibility
to rent additional warehouses. A particular characteristic of this case
study is the high setup costs and times of the machines. For this rea-
son, the mathematical formulation considers the setup carryover, setup
crossover, besides transfers between plants. Preliminary results suggest
that a commercial solver is able to solve real-based instances in an ac-
ceptable time.
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Introduction

The lot sizing problem (LSP) is the object of several studies found in the literature
[1], due to its wide applicability in different industrial segments. In general, the
LSP consists of finding the production plan (item quantity in each period, when
and where to produce the items, etc.) to meet the item demands minimizing related
costs (maximizing profit). Moreover, several constraints that vary according to the
application must be considered, such as inventory balance and setup of the machines.
This study models an LSP considering the characteristics of a multinational company
that produces metallic packaging.
In line with this, this paper presents a mathematical model for the multi-plant LSP
(MPLSP) that considers setup carry-over. We also incorporate new features inherent
in this case study: restriction in production lines, storage control in the plant, and
rented warehouses. The objective function aims at minimizing the total costs of the
aluminum beverage packing industry.

Problem Description

The case study of a metal packaging company is composed of multiple plants and
the demands of the customers by plant are deterministic. The distribution of final
items between plants is allowed. Therefore, the items are transferred from the plants
to other plants or storage locations to meet the demands of the different plants.
The multiple plants have distinct production lines, which may have restrictions on
the manufacturing of certain products from the company portfolio. The plants have
limited internal storage environments but, if necessary, the plant can rent extra
storage spaces, called external storage.
The production process involves production, setup, inventory (either to store inside
the plant or in external warehouses) and transportation costs, for transferring items
between plants. The costs are unitary and may vary according to the item, location,
and period. The backlogging is also allowed, i.e, the company may not be able to
meet the customer deadline so as the delivery is delayed, by considering an extra
expense (backlogging cost).
The time available for each plant is limited and comprises the machine setup, the
time used for manufacturing items, and the idle time. The setup times for the
production of certain items are considerably high, up to 10 days, and there is a
dependency between the setups not approached in this paper. There are setup time
constraints for both the use of the machinery and for its preparation.
The mathematical model presented by Belo-Filho et al [2] was the closest formu-
lation to the case study. To address long setup times, both setup carry-over and
setup crossover are allowed. Figure 1 shows some possible setup situations that are
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considered in this study.

Figure 1: Various setup situations that may occur during the production process.

In summary, the MPLSP with multiple items and periods target of this study consid-
ers: internal storage, backlogging, setup crossover, and setup carryover. The model
of [2] was adapted to include inter-plant transfers, external storage, production lines
distinct in the plants, and the production restrictions between lines and products.

Computational Results

Using the data from the company as basis, were generated 15 instances with 12
periods on the planning horizon, each representing a month, 5 to 15 plants, 10 to
30 production lines and 2 to 10 items. The lines were randomly distributed among
the factories, which could contain up to 5 production lines each. The parameters
ranged between the observed intervals within the real data. Due to the tightness of
the production capacities, each plant started with the setup of the first item in the
planning horizon ready.
The results of preliminary tests are presented in Table 1. They were obtained using
the solver Gurobi 9.1.1 with a time limit of 3600 seconds. It shows that Gurobi
could solve small-sized instances very efficiently, but the instance size increases, the
optimal solution is not guaranteed. However, we must point out that even for the
largest instances, Gurobi achieved low gaps.
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Table 1: Results obtained using Gurobi 9.1.1

Instance
Name

Number of
Plants

Number
of Lines

Number of
Items

FO
Relative

Gap
Time

Elapsed
peq2 5 10 2 30114236.98 0 1.078
peq4 5 10 4 273237615.5 0 8.906
peq6 5 10 6 369895483.4 0 19.563
peq8 5 10 8 714872862.6 0 130.281
peq10 5 10 10 1369856593 0 228.172
med2 10 20 2 66428711.64 0 2.437
med4 10 20 4 184624112.8 0 285.89
med6 10 20 6 328197256.6 0 1929.734
med8 10 20 8 754572360.4 0 2522.422
med10 10 20 10 1005944950 0.032 3600.828
grd2 15 30 2 79803905.47 0 20.594
grd4 15 30 4 267030652.1 0.010 3602.468
grd6 15 30 6 647868820.6 0.028 3600.828
grd8 15 30 8 917459422.6 0.110 3601.125
grd10 15 30 10 1791259134 0.186 3600.125
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Abstract

In the NP-hard lot-sizing and market selection problem one needs to
select the markets to serve and construct a production plan to satisfy the
demands of the markets selected. We consider single and multi-objective
versions of the problem with trade-offs between revenues and costs, as
well as market share and costs. We show how to apply a Benders decom-
position approach in an effective way by utilizing an efficient procedure
to get the dual variables of the Benders subproblems. Moreover, we
establish a relationship between the Benders cuts and the core of a cor-
responding cooperative lot-sizing game, where in the latter game the
lot-sizing costs need to be shared among players in a fair way. Finally,
we propose how to reuse the Benders cuts to get an effective algorithm
for the multi-objective version of the problem.

Introduction

The economic lot-sizing problem considers a production planning problem where the
goal is to satisfy a set of deterministic dynamic demands over a planning horizon
at minimum production cost. In this traditional problem, the set of demands to be
satisfied are predetermined and there is no option for partial satisfaction by choosing
some percentage of the demand. However, in today’s competitive business environ-
ment, global companies make decisions not only on the supply side but also on the
demand side [1]. Specifically, these companies select the set of markets whose de-
mands they would like to satisfy instead of satisfying a predetermined deterministic
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demand. Hence, the problem has two decision stages: first, to determine the markets
whose demand will be satisfied, and then, plan the lot sizing decisions to satisfy the
whole demand. Since the selection of markets affect the lot-sizing decisions, these
two types of decisions need to be made simultaneously.
[2] consider a production planning problem where a set of markets with known de-
mands and corresponding revenues exists. The problem is to select the markets
whose demands will be fully satisfied through a single product that has a lot-sizing
production cost structure. Since the lot sizing decisions are affected by the to-
tal demand to be satisfied, it is important to select the markets wisely to satisfy
their demands. They develop an integer programming formulation for the economic
lot-sizing problem with market selection, which they refer to as market selection
problem. Then, they prove that the problem is NP-Hard, introduce polynomially
solvable special cases and a heuristic for the general case.
We consider a similar problem as [2] but within a multi-objective problem setting.
Specifically, we consider a problem where the objective may not only consist of
profit, but also entails revenue or market share. We first develop an exact solution
method for the single objective version based on a decomposition algorithm, which
can be used to effectively solve the multi-objective optimization model.

Problem Description and Mathematical Model

We study an integrated market selection and lot sizing problem over a planning
horizon that consists of T planning periods. There is a set of markets, m = 1, . . . ,M ,
each of which has a deterministic demand, dmt , for each period t = 1, . . . , T . If we
decide to satisfy the demand of the market throughout the planning horizon, then
we obtain a revenue Rm. There is a fixed setup cost, Kt, incurred if we decide
to produce in that period and a variable production cost, pt, per every unit we
produce. We pay an inventory holding cost of ht for every unit that we put in the
inventory at the end of period t. Finally, Cit represents the unit cost of producing
in period i = 1, . . . , t and holding cost from period i to period t = 1, . . . , T , i.e.,
Cit = pi +

∑t
j=i hj.

The first set of binary decision variables are the market selection variables, zm, which
take the value of 1 iff we decide to satisfy the demand of that market. Then, we
have lot-sizing decision variables: yt is a binary variable that takes the value of 1
iff we decide to produce in period t = 1, . . . , T , and xmit gives the amount of units
produced in period i = 1, . . . , t to satisfy the demand of market m = 1, . . . ,M in
period t = 1, . . . , T . We can formulate our single-objective, maximization of the net
profit, mathematical model as follows:

(MIP) max
M∑
m=1

Rmzm −
T∑
t=1

(
Ktyt +

t∑
i=1

M∑
m=1

Citx
m
it

)
(1)
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s.t.
t∑
i=1

xmit = dmt zm, t = 1, . . . , T ;m = 1, . . . ,M (2)

xmit ≤ dmt yi, i ≤ t = 1, . . . , T ;m = 1, . . . ,M (3)
xmit ≥ 0, i ≤ t = 1, . . . , T ;m = 1, . . . ,M (4)
yi, zm ∈ {0, 1}, i = 1, . . . , T ;m = 1, . . . ,M. (5)

The objective function (1) maximizes the net profit that is obtained by subtracting
the lot-sizing cost from the revenue obtained from the markets that are selected.
Constraints (2) are demand satisfaction constraints for the markets that we selected
throughout the planning horizon. Constraints (3) make sure that we can produce
only if we pay the setup cost and the amount of production for period t does not
exceed the demand at that period. Constraints (4) and (5) are the nonnegativity
and binary restrictions for the decision variables, respectively.
In practice, one does not necessarily prefers to maximize profit, but market share
may also be an important objective. With z1 (resp. z2) be the first (resp. second)
objective, sensible versions of the multi-objective market selection problem are:

Revenue vs. cost: (z1, z2) =

(∑M
m=1Rmzm,

∑T
t=1

(
Ktyt +

∑t
i=1

∑M
m=1CitX

m
it

))
Market share vs. cost: (z1, z2) =

(∑M
m=1

∑T
t=1 d

m
t zm,

∑T
t=1

(
Ktyt +

∑t
i=1

∑M
m=1CitX

m
it

))
Furthermore, it will turn out that finding the maximum return on investment (ROI),
i.e., maximizing the objective ∑M

m=1Rmzm∑T
t=1

(
Ktyt +

∑t
i=1

∑M
m=1CitX

m
it

)
can be done by using the results from the “Revenue vs. cost” multi-objective prob-
lem.

Decomposition Algorithm

We propose a decomposition approach to solve the problem. The main idea is
to decompose the problem into a master problem and a subproblem, where the
information of optimal solutions of the subproblems will be used to generate cuts for
the master problem. For our specific problem we propose a decomposition where the
master problem mainly involves the markets to be selected, while the subproblem
takes care of the lot-sizing cost. With this in mind, the master problem can be
written as

(MP) max
M∑
m=1

Rmzm − ν(z) (6)
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s.t. zm ∈ {0, 1}, m = 1, . . . ,M, (7)

where ν(z) is the lot-sizing cost when markets given by z = (z1, . . . , zM) are selected.
Suppose for the moment that it is possible to formulate the cost ν(z) in a linear way
for a given market selection z, i.e.,

ν(z) =
M∑
m=1

βzmzm, (8)

and that the linear expression is valid for any other market selection z′, i.e.,
∑M

m=1 β
z
mz
′
m ≥

ν(z′). Then the master problem can be rewritten as

(MP2) max
M∑
m=1

Rmzm − θ (9)

s.t. θ ≥
M∑
m=1

βzmzm for each market selection z ∈ {0, 1}M (10)

zm ∈ {0, 1}, m = 1, . . . ,M. (11)

The issue with this formulation is that (i) we need a procedure to find the βzm
coefficients in (10), and (ii) there is an exponential number of constraints (10).
To deal with issue (ii), instead of pre-computing all constraints (10) upfront, we
generate them in a cutting plane fashion. This leads to the following algorithm.

Step 0 Initialization: start with set of cuts (possibly empty)

Step 1 Solve (MP2) with current set of cuts, resulting into an optimal solution z̃

Step 2 If θ < ν(z̃), generate cut of type (8) and add it to set of cuts, Go to Step 1

Step 3 Otherwise, output the optimal solution z̃.

We find the Benders cuts (issue (ii)) by using a relationship with the core of a
corresponding cooperative lot-sizing game, where in the latter game the lot-sizing
costs need to be shared among players in a fair way. The decomposition approach
turns out to be competitive compared to using a commercial solver. Finally, we
propose how to reuse the Benders cuts to get an effective algorithm for the multi-
objective version of the problem.
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Abstract

This work studies a multi-echelon multi-item lot-sizing problem with
remanufacturing and lost sales. The problem is formulated as a mixed-
integer linear program. A new family of valid inequalities taking advan-
tage of the problem structure is introduced and used in a customized
branch-and-cut algorithm. The provided numerical results show that
the proposed algorithm outperforms both the generic branch-and-cut
algorithm embedded in a standard-alone mathematical solver and a pre-
viously published customized branch-and-cut algorithm.

Introduction

The present work considers a remanufacturing system involving three production
echelons: disassembly of used products brought back by customers, refurbishing
of the recovered parts and reassembly into like-new finished products. We aim at
optimizing the production planning for the corresponding three-echelon system over
a multi-period horizon. Within a remanufacturing context, production planning
includes making decisions on the used products returned by customers, such as how
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much and when used products should be disassembled, refurbished or reassembled
in order to build new or like-new products. The main objective is to meet customers’
demand for the remanufactured products in the most cost-effective way.
Only a few works have addressed such multi-echelon production systems through
exact solution approaches. A first attempt at tackling this difficulty can be found
in [3]. Quezada et al. [3] considered the problem in a stochastic setting, taking into
account uncertainties on the problem input parameters. They proposed a multi-
stage stochastic approach based on the use of scenario trees. The problem was for-
mulated as a MILP and solved through a new customized branch-and-cut algorithm.
This algorithm relied on valid inequalities focused on strengthening the formulation
of the single-echelon uncapacitated lot-sizing sub-problems embedded in the main
problem. Although this approach was successful at providing near optimal solutions
for small to medium size instances, some numerical difficulties were encountered to
solve the larger instances. Intuitively, this difficulty might be partly due to the fact
that the valid inequalities used to strengthen the formulation considered uncapac-
itated single-echelon sub-problems. They did not take into account the fact that,
even if the production resources are assumed uncapacitated, the amount of products
that can be processed on a resource at a given time period is limited among others
by the amount of available used products returned up to this time period and by the
yield of the disassembly process, i.e. by the proportion of disassembled parts that
are in a sufficiently good state to be refurbished and reused in a remanufactured
product. Hence, using valid inequalities taking into account this aspect of the prob-
lem might contribute in further strengthening its MILP formulation and decrease
the computational effort needed to solve large-size instances.
To the best of our knowledge, the formulation of valid inequalities that explicitly
take into account the impact of a limited returns quantity on the production plan
has not yet been studied for a multi-echelon remanufacturing system. The present
work aims at partially closing this gap by proposing new valid inequalities for this
problem. The numerical results show the usefulness of the proposed inequalities at
solving the problem under study.

Problem description and modeling

Production system

We consider a remanufacturing system comprising three main production echelons:
disassembly, refurbishing and reassembly. We seek to plan the production activities
in this system over a horizon comprising a discrete set T = {1, .., T} of periods.
The system involves a set I of items. Among these ones, item i = 0 represents the
used products returned by customers in limited quantities at each period. A used
product is composed of I parts. Let αi be the number of parts i embedded in a used
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product. The returned products are first disassembled to obtain a set Ir = {1, ..., I}
of recoverable parts. Due to the usage state of the used products, some of the parts
obtained during disassembly have to be discarded. In order to reflect the variations
in the quality of the used products, i.e. the yield of the disassembly process, we let
πti denote the proportion of parts which will be recoverable at each time period t for
each item i = {1, . . . , I}. The recoverable parts are then refurbished on dedicated
refurbishing processes. The set of Is = {I + 1, ..., 2I} of serviceable parts obtained
after refurbishing are reassembled into remanufactured products which have the
same bill-of-material as the used products. These remanufactured products, indexed
by i = 2I + 1, are used to satisfy the dynamic demand of customers.
The system comprises a set P = {0, ..., I + 1} of production processes: p = 0
corresponds to the disassembly process, p ∈ {1, ..., I} corresponds to the process
refurbishing the recoverable part indexed by p into the serviceable part indexed by
p + I and p = I + 1 corresponds to the reassembly process. All these processes
are assumed to be uncapacitated. All input parameters of the problem are time-
dependent: rt denotes the quantity of collected used products, dt the customers’
demand and πti the proportion of recoverable parts i ∈ Ir obtained by disassembling
one unit of returned product at period t. As for the costs, for each period t, we have
the setup cost f tp for process p ∈ P , the unit inventory cost hti for part i ∈ I, the
unit lost-sales penalty cost lt, the unit cost qti for discarding item i ∈ Ir ∪ {0} and
the unit cost gt for discarding the unrecoverable parts obtained while disassembling
one unit of returned product.

Echelon stock reformulation

We now provide a formulation of the problem using the echelon stock concept [2].
The echelon stock of a product in a multi-echelon production system corresponds to
the total quantity of the product held in inventory, either as such or as a component
within its successors in the bill-of-material. In order to build a mathematical model
for the problem, we introduce the following decision variables at time period t ∈ T :
we denote by Et

i the echelon stock level of item i ∈ I \ {0} at the end of period
t, X t

p the quantity of parts processed on process p ∈ P , Y t
p ∈ {0, 1} the setup

variable for process p ∈ P , Sti the inventory level of part i ∈ I, Qt
i the quantity of

part i ∈ Ir ∪ {0} discarded and Lt the lost sales of remanufactured products. This
variables definition leads to the following MILP formulation:

min
∑
t∈T

(∑
p∈J

f tpY
t
p + htiS

t
0 +

∑
i∈I\{0}

ehtiE
t
i +

∑
i∈Ir∪{0}

qtiQ
t
i + gt0X

t
0

)
(12)

X t
p ≤M t

pY
t
p ∀p ∈ J ,∀t ∈ T (13)

St0 = St−10 + rt −X t
0 −Qt

0 ∀t ∈ T (14)
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Et
i = Et−1

i + πtiαiX
t
0 − αi(dt − Lt)−Qt

i ∀i ∈ Ir,∀t ∈ T (15)

Et
i = Et−1

i +X t
i−I − αi(dt − Lt) ∀i ∈ Is,∀t ∈ T (16)

Et
2I+1 = Et−1

2I+1 +X t
I+1 − dt + Lt ∀t ∈ T (17)

S0
0 = 0 (18)

E0
i = 0 ∀i ∈ I \ {0} (19)

Et
i − Et

I+i ≥ 0 ∀i ∈ Ir,∀n ∈ T (20)

Et
i − αiEt

2I+1 ≥ 0 ∀i ∈ Is,∀n ∈ T (21)

Et
i ≥ 0 ∀i ∈ I,∀t ∈ T (22)

St0, L
t ≥ 0 ∀t ∈ T (23)

X t
p ≥ 0, Y t

p ∈ {0, 1} ∀p ∈ J ,∀t ∈ T (24)

The objective function (12) aims at minimizing the total cost over the whole planning
horizon. Constraints (13) link the production quantity variables to the setup vari-
ables. Constraints (14)-(17) are the inventory balance constraints. Constraints (14)
use the classical inventory variables, whereas Constraints (15)-(17) make use of the
echelon inventory variables. Constraints (18)-(19) translate the fact that the initial
inventory of each item is assumed to be equal to 0. Constraints (20)-(21) ensure
consistency between the echelon inventory at the different echelons of the bill-of-
material and guarantee that the physical inventory of each product, Sti , remains
non-negative for all i ∈ I . Finally, Constraints (22)-(24) define the domain of the
decision variables.

Single-echelon (`, k, U) inequalities

We now seek to strengthen the single-echelon (k, U) inequalities investigated in [1]
and [3] by considering the limited quantity of returned products available at each
time period in the system. The (`, k, U) inequalities are defined as follows:

Proposition 1. Let 0 ≤ ` ≤ k ≤ T be two periods of the planning horizon.
Let U ⊆ {k + 1, ..., T} be a subset of periods and t∗ = max{τ : τ ∈ U} be the last
time period belonging to U .
The following inequalities are valid for Problem (13)-(24):

S`0π̂
`,t∗

i + α−1i Eki +
∑

k<t≤t∗
φtiY

t
0 ≥

∑
t∈U

(dt − Lt) ∀i ∈ Ir (25)

S`0π̂
`,t∗

i + α−1i (E`i − E`i+I) + α−1i Eki+I +
∑

k<t≤t∗
φtiY

t
i ≥

∑
t∈U

(dt − Lt) ∀i ∈ Ir (26)

S`0π̂
`,t∗

i + (α−1i E`i − E`2I+I) + Ek2I+1 +
∑

k<t≤t∗
φtiY

t
I+1 ≥

∑
t∈U

(dt − Lt) ∀i ∈ Ir (27)
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with φti = min
{ ∑
`<ν≤t

rν π̂ν,ti ,
∑

ν∈U :t≤ν
dν
}

It is worth mentioning that the (k, U) inequalities used in [3] to strengthen the
formulation (12)-(24) can be seen as a particular case of the more general family of
(`, k, U) inequalities (25)-(27) proposed in this work. Namely, by setting ` to 0 and
by computing the value of φt without taking the returns into account (i.e. by setting
φt to

∑
ν∈U :t≤ν

dν), each (`, k, U) inequality (25)-(27) becomes a (k, U) inequality.

We will present numerical results that show the usefulness of the proposed inequal-
ities at solving the problem under study.
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Abstract

We study a new lot sizing variant where we assume that neither the
planning horizon length nor the demands are known exactly. This setting
is common in practice, since demand information is only accessible for
a narrow time window and is revealed gradually over time. Moreover,
problem parameters are often based on forecasts and hence are inher-
ently uncertain. This results in a rolling horizon procedure, i.e., the
multi-stage problem dissolves into a series of coupled snapshot problems
with uncertain parameters. Depending on the available information, dif-
ferent approaches from online optimization, stochastic programming and
robust optimization have to be selected to solve the snapshot problems.
To evaluate the impact of the selected methodology on the solution qual-
ity we use a recent methodology-agnostic framework for multi-stage deci-
sion making. We discuss some computational results regarding different
solution approaches and the value of available information here.

Introduction

Operational decision making in practice often suffers from uncertainty in the input
data. This applies in particular when the uncertain information concerns future
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Figure 1: Illustrating differences between approaches for T = 3 and 4.

events and developments. In this case, decisions must be made at certain points in
time, even though there is no chance of knowing how the future will unfold. Many
problems exhibiting these features arise in settings which are driven by the release
of customer orders, e.g., in production, supply chain management, and logistics.
One prominent example is lot sizing. In its basic form, a lot sizing model seeks a
production plan over T periods such that given customer demands d1, d2, . . . , dT are
met and the sum of production, setup and storage costs is minimized. The problem
in practice, however, is that usually neither the planning horizon length T nor de-
mand values are known precisely and decisions have to be made in a rolling horizon
procedure. Existing research mainly focuses on extensions for deterministic models
or on specific uncertainty types. Our approach is different insofar as we allow for an
open planning horizon and different specifications of information about upcoming
demands. The recently proposed methodology-agnostic framework for multi-stage
decision making under uncertainty [2] has been designed exactly with the goal of de-
ploying and quantifying the effects of different types of data uncertainty and related
solution techniques. According to [1], such an inter-disciplinary comparison between
different approaches is required by any comprehensive analysis of a specific problem
setting involving uncertain data. Our research contributes a cross-methodological
analysis of multi-stage lot sizing under different types of uncertainty and related
solution approaches.
We present an example to illustrate our setting beginning with T = 3. The scenario
tree is depicted in Figure 1. Each path from the root to a leaf represents a pos-
sible scenario where demand realization probabilities are displayed as edge labels.
Production costs are 3, setup costs 20, storage costs 1, shortage costs 100 mone-
tary units, and we start with an empty stock. The red path represents the realized
scenario. However, only information about the subsequent stage is present at each
decision moment in the rolling horizon procedure. The production plans obtained
by solving the snapshot problems through online optimization (OO), stochastic pro-
gramming (SP), and robust optimization (RO) are summarized in the table. Here,
OO with its access to the deterministic lookahead performs best; SP is second, due
to the distraction by the more probable outcome in t = 2; RO finishes last as it



International Workshop on Lot Sizing 2021

produces in every stage neglecting available information. To show the effect of in-
creasing the available amount of information, consider an additional stage t = 4
with a realized demand of 8 in the OO setting. Then, if we increase the lookahead
size from τ = 1 to τ = 2, the changed production plan allows to save 4 units by not
producing in t = 4.

Multi-stage lot sizing under demand uncertainty

In the framework for multi-stage decision making under uncertainty [2], parameters
are distinguished in two groups. The static data D0 consists of the the production
costs cp, setup costs cf , storage costs ch, shortage costs cs and the initial stock s0.
The time-dynamic data Dt consists of the current stock level st−1 and the latest
demand dt. Furthermore some deterministic (Lt) and uncertain (Ut) information
is available about the future demands dt+1, dt+2 etc. The production decision xt to
be made and implemented in each stage results from solving a snapshot problem
based on D0 and Dt. The overall procedure then consists of a series of snapshot
problems to be solved and decisions to be implemented. Each time period t a new
demand dt becomes known, the interaction chain is started with the updated data
(see Figure 2). Which methodology is used to model and solve the snapshot problem
is prescribed by paradigmt. If online optimization is requested, then the snapshot
model is a deterministic lotsizing problem with 1 + |Lt| time periods and we use
the standard MIP model. In case of stochastic programming or robust optimization
the deterministic equivalent formulation of the usual SP or RO models are used for
the snapshot problems. The result in the form of a tentative production plan is
reported to the decision maker and made available to evaluation. The framework
provides the user with freedom concerning demand representation and the related
choices of snapshot models and algorithms. For example, hybrid settings are also
possible, i.e., combining lookahead for the near future with uncertainty sets for the
distant future.

D0, dt, st−1, Lt, Ut

paradigmt

D0, dt+1, st, Lt+1, Ut+1

paradigmt+1

stage t
production
quantity xt

stage t+ 1
requires

incurs cost ct(xt)

influences

stock level st

releases latest demand dt+1

environment

Figure 2: Illustration of the transition process from stage t to stage t+ 1.
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Computational Results

The algorithms are implemented in C++ and tested on a Ubuntu Linux machine.
MIPs are solved using Cplex 20.1. For each setting, 100 instances are generated
randomly with T = 100 and demands drawn uniformly from [10, 100]. Here, only
the storage costs ch vary, other cost parameters are set to cp = 0, cf = 15, cs = 5.
For RO and SP, two possible outcomes are known for each upcoming time period.
We compare the settings with respect to the average costs accumulated over T .

Value of lookahead in OO and forecasts in RO and SP The value of infor-
mation is highly dependent on the storage costs ch and decreases fast with increasing
|Lt| and |Ut| respectively. This is also true for the utopic setting ch = 0 (depicted
in gray). In summary you can see that RO performs slightly worse that SP and OO
is always ahead because of its deterministic information.
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Inter-disciplinary comparison We compare hybrid approaches with Ut = 1, 2, 3
combined with a fixed-size Lt. We show the case ch = 0.1 only and use OO as the
baseline (depicted in black). As expected, SP is always behind OO and is usually
followed by RO. Surprisingly, RO with |Ut| = 2 and |Lt| = 2 outperforms its SP
counterpart. Note that in the more distant future (|Ut| + |Lt| ≥ 4) however, the
differences between the disciplines are almost completely eradicated.
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Abstract

We investigate the problem of approximating the optimal policies to
backlog, lost sales and delivery lead times versions of the Single Location
Stochastic Inventory Problem, by using Deep Reinforcement Learning.
The neural network at the core of the heuristic applies to the general
continuous inventory level problem and enables the approximation of
optimal policies of unseen instances of the problem after an appropriate
tuning and training. The proposed solution approach is novel in the
literature and constitutes an example of the benefit that a cooperation
between optimization and machine learning can bring not only to the
respective research areas but also to practical problem solving.

Introduction

The more and more profound integration between Neural Network (NN) approxima-
tors and Reinforcement Learning (RL) methods in recent years boosted the develop-
ment of Deep Reinforcement Learning (DRL), a machine learning framework able to
model and solve Markov Decision Processes (MDPs). The Q-Networks, AlphaGo,
AlphaZero [3, 6], and more recently, MuZero [5], are all examples of DRL meth-
ods able to surpass human experts in complex video games such as Chess, Go or
Shogi. DRL has also enabled robots to learn how to perform complex tasks such as
walking, running, jumping, or even dancing [2, 1]. The stochastic and time-delayed
consequences involved in these examples can be tackled by DRL without requiring
any particular assumption on the system under study. The underlying NN allows
to model high-dimensional action-spaces as well as to approximate arbitrarily com-
plex functions or to learn stochastic dynamics, when provided with an appropriate
training environment characterized by the same behavior as the considered system.
We aim to demonstrate that DRL is a promising way to tackle and solve stochastic
dynamic Operations Management problems without having to concede on simplify-
ing assumptions. To this end, we focus on finding close to optimal order policies
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to different versions of the Single Location Stochastic Inventory Problem (SL-SIP)
by adapting a DRL technique. An intrinsic advantage of our approach is to be
able to find solutions under different assumptions about the system of interest such
as whether the unsatisfied demand is lost or backlogged. We achieve this task by
representing complex policies with high-dimensional state spaces in terms of specific
Neural Networks trained with Deep Reinforcement Learning.
A comparison of the performance of the proposed approach on the non-stationary
single-location inventory problem of [4] with various lead times and its lost sales
version to baseline (st, St) policies shows that the trained NN can indeed interpolate
close to optimal policies to previously unseen instances. We also show via an abla-
tion study that both the discrete-continuous hybridization and the linear annealing
components that we propose contribute greatly to improve the stability and the
performance of the learning task.

Notation and formulations of the SL-SIP

The SL-SIP as described by [4] is a single-location single-item finite horizon non-
stationary dynamic lot sizing problem under demand uncertainty. For each period
t ∈ 1, . . . , T , we have an uncertain Gaussian demand distribution dt ∼ N(µt, σ

2
t ).

Because the demand is naturally non-negative, we make the assumption that the
coefficient of variability CV = σt/µt is low enough to make negative demand neg-
ligible. The process starts with an initial inventory level z1. This model assumes
non-stationary demand distributions, a fixed order cost (K), linear variable order
costs (c), linear holding (h) and stock-out (b).
At the beginning of each period, one must take the decision to raise the inventory
level by ordering a quantity qt. The inventory reaches a level yt = zt + qt, available
to satisfy the demand of period t. After production, the demand realizes according
to its distribution and the inventory level reaches zt+1 = yt − dt.
In the context of Reinforcement Learning, the Markov Decision Process to be solved
is called an environment and is actually implemented as a simulation of the se-
quential decision problem we aim to solve. A RL agent can observe the state of
the process and interact with it by exerting an action that causes the transition
of the environment to a new state and the return of a reward. We implemented a
Reinforcement Learning environment that simulates the SL-SIP where the action
vector is at = (qt), the state vector xt = (µt, µt+1, . . . , µt+H−1, zt) where H is a
forecast horizon, and the rewards are the negative costs incurred at each period.
During training, all the elements of the state are randomized at the first period so
that the learning agent cannot overfit an instance by memorizing the best quantities
to order at each period. While Scarf’s results have been generalized to other cost
functions [?, e.g.]]porteus71, we only consider the case of a Gaussian demand error
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and linear ordering, holding and stock-out costs. Any different assumption would
simply involve changing the reward signal or the transition dynamics of the MDP
accordingly.

A Deep Reinforcement Learning Algorithm for the

SL-SIP

We propose a tailored hybrid version of the Deep Deterministic Policy Gradient
algorithm (DDPG) for solving the SL-SIP. DDPG approximates two functions with
dedicated neural networks. The first (called the critic) is an action-value function
Q(xt, at) that predicts the discounted present value of taking action at when the
system is in state xt. The second (called the actor) is a continuous policy function
π(xt) that predicts the action that maximizes Q(xt, at). During training, the action
has a probability of being randomized so as to increase the exploration of the state-
action space. We propose two main adaptations to the vanilla DDPG to fit the
SL-SIP task.
Firstly, we add a discrete component to DDPG to leverage the knowledge that
ordering 0 is always a local optimum. We use a novel two-step hybrid continuous-
discrete variant of DDPG. Specifically, a standard deterministic actor neural network
is trained to approximate a continuous policy πA(xt). During interactions with the
environment, the hybrid agent policy is to choose

at = π(xt) := argmax
a

[Qπ(xt, a) : a ∈ {(0), πA(xt)}] .

That is, the agent chooses between the action proposed by the continuous policy
and the local optimum a = (0), according to the most valued critic estimate.
Secondly, a high fixed order cost K alone makes the learning the continuous policy
hard. To help the agent find a good policy in its first learning iterations, we add a
linear annealing to gradually increase its value during training, starting from a low
value until it reaches the target.
Despite all the improvements we propose, it can still happen that the algorithm
converge to a never-order policy or diverges to excessive order quantities due to
explosive gradient updates. A common practice in ML to overcome such problems is
model ensembling (or bagging). It consists in training several models and have them
vote on the best output, effectively forming a super-model. We bag N independently
trained agents as follows. Given a state s, each agent proposes an action an. Then
each agent estimates the action-value of each proposed action. The ensemble model
returns the action with the highest median action-value. Of course, the drawback is
that ensembling necessitates the training of N agents and thus multiplies the time
needed to obtain a model.
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Experiments

We test the ability of our agent to generalize their knowledge to demand forecasts
which follow various realistic trend patterns that they never encountered during
training. To do so, the initial inventory of the training environment and each demand
forecast are randomly drawn from uniform distributions with large supports. The
forecasts horizon, and thus the optimization horizon, is 52 periods.
We perform three experiments, one for each version of the SL-SIP problem: the stan-
dard backlog version; with different lead times; and the lost sales version. Twenty
agents are trained per environment configuration (i.e. with different cost param-
eters) and tested individually. The performance of an agent and of the baseline
policies are evaluated on each instance of the test dataset as the average return over
1000 Monte Carlo policy evaluations. We effectively test our approach on 18000
unique SL-SIP instances, all unknown to the agents.
The baseline policies against which we compare our agents are the discrete (st, St)
policies computed with a precision of 0.1. The median gaps of the agents are 2.4%
on the backlog environments; 1.9%, 1.7%, 2.2%, 4.9% on environments with lead
times of 1, 2, 4, and 8 respectively; and 1.6% on lost sales environments (where the
baseline is heuristic). Model ensembling further reduces these gaps as well as their
variability with magnitudes dependent on the number of constituting models.
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Abstract

We consider a multi-echelon inventory management problem that
aims to minimize the system-wide total backorder costs and inventory
holding costs. When backorder costs are incurred at more than one
stage, the optimal policy is unknown even in a simple serial system. We
apply and compare three state-of-the-art deep reinforcement learning
(DRL) algorithms including Dueling Double Deep Q-network, Advan-
tage Actor-Critic and Twin Delayed Deep Deterministic Policy Gradi-
ent. We also propose a mechanism, Heuristic-Guided Exploration, to
improve the training efficiency by incorporating known heuristics into
the exploration process of the DRL algorithms.
Key words : machine learning, deep reinforcement learning, inventory
management, multi-echelon
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Introduction

In this paper, we consider a multi-echelon inventory management problem based on
the beer game introduced in [1]. The objective of the beer game is to minimize the
total holding cost and backorder cost of all four facilities in a serial supply chain. The
optimal ordering policy is unknown except for the special case where the backorder
cost only happens at the retailer stage.
Reinforcement learning (RL) is a computational framework that can be applied to
solve Markov decision processes (MDPs) and deep reinforcement learning (DRL)
combines it with deep learning using deep neural networks as powerful function
approximators. Oroojlooyjadid et al. [2] applied the deep Q-networks (DQNs) algo-
rithms [3] to the beer game to train DRL agents and showed that they have compa-
rable or better performance in different scenarios when compared to the benchmark
heuristic. However, this previous study only considers the discrete action space
with a small limited number of discretized action values. This limits the size of the
problems it can solve and also the granularity of decisions. Furthermore, due to
the curse of dimensionality, the agent can only make decisions for one facility with
other facilities following predefined policies instead of making coordinated decisions
for all four facilities together. This motivates us to implement the Twin Delayed
Deep Deterministic Policy Gradient (TD3), a state-of-the-art DRL algorithm that
has a continuous action space and can train an agent to make centralized decisions
for all four facilities at the same time. Two other state-of-the-art algorithms with
a discrete action space (with more details in Section ) are also implemented and
compared.

Problem Description

The problem considers four subsequent facilities in a serial supply chain. The retailer
observes independent stochastic demand and each facility places periodic orders to
its upstream supplier. An external supplier is assumed to have unlimited capacity
and always ships immediately after it receives orders. We neither have control over
this external supplier, nor do we observe the state or the cost of it.
There is a positive information lead time, as well as a positive product shipment
lead time. At each of the facilities, inventory holding costs are incurred for every
period when there is positive inventory at the facility. Backorder costs are incurred
when there are unfulfilled open orders at the end of the period. The objective is to
minimize the total holding costs and backorder costs of all four facilities. Depending
on whether the decisions are made locally for one facility at a time or centrally for all
four facilities at the same time, we consider two versions of the problem: decentralized
single-facility and centralized multi-facility.
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In the decentralized single-facility setting, the agent only observes its own state
and needs to make ordering decisions for only one facility with locally observed
information, while the other three facilities follow predefined ordering policies. In
the centralized multi-facility setting, the agent can observe the states of all four
facilities and needs to make ordering decisions for all four facilities at the same
time with the complete state information. The objective is the same for the two
settings: the four facilities take collaborative decisions to minimize the cumulative
overall supply chain cost over the K time periods. To the best of our knowledge,
the centralized multi-facility setting has not yet been experimented with in the past
using DRL algorithms.

Deep Reinforcement Learning Algorithms and Nu-

merical Experiments

DRL algorithms train agents to learn a policy that maps the states to the corre-
sponding probability distributions over the actions. Thanks to the capability of
deep neural networks, DRL algorithms are able to accommodate high-dimensional
state vectors. We let the state vector contain relevant information observable by
the facility including its on-hand inventory, backorder quantities, the latest demand
and its purchase order pipeline.
We test scenarios with different cost structures and demand pattern, one with a
known optimal policy and the other without. This allows us to investigate two
questions. First, for the problems without known optimal policies, can the DRL
agents find better policies compared to the benchmark approach? Second, for the
problems with known optimal policies, how closely can the DRL agents perform
when compared with these optimal policies?
We apply three state-of-the-art DRL algorithms to the beer game. The first algo-
rithm Duelling Double DQN (DDDQN) [4], an improved version of DQN, is tested
and the results are compared to the results of base-stock policies with two-moment
approximation target stock levels, as well as to the results of the vanilla DQN
reported by Oroojlooyjadid et al. [2]. Applying the popular on-policy learning
algorithm Advantage Actor-Critic (A2C) [5] allows us to investigate the learning
efficiency of off-policy learning versus on-policy learning in the context of inventory
management. Finally, implementing the TD3 algorithm allows us to investigate the
potential advantage of having a continuous action space. While the decentralized
single-facility beer game is solved by all three algorithms, the centralized multi-
facility beer game is solved by TD3 only as DDDQN and A2C cannot efficiently
solve problems of such a large action space. Table 1 summarizes these three algo-
rithms and their characteristics.
In the decentralized single-facility setting, preliminary results show that both DDDQN
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Algorithms On- /off-policy Action space Policy
DDDQN Off-policy Discrete Deterministic
A2C On-policy Discrete Stochastic
TD3 Off-policy Continuous Deterministic

Table 1: DRL algorithms applied in this study and their characteristics.

and TD3 agents outperform the benchmarks in scenarios for which the optimal poli-
cies are unknown, while TD3 agents have the best performance in most scenarios.
In the centralized multi-facility setting, to improve the learning efficiency when
searching in the high-dimensional action space, we propose an exploration scheme
called Heuristic-Guided Exploration (HGE) that incorporates known well-performing
heuristics into the exploration process of DRL algorithms. Instead of starting from
scratch, HGE allows that the agent, with a decaying probability µ2, follows a heuris-
tic to generate meaningful experiences at the beginning of the training as guided
exploration. This is analogous to using the known heuristic as a constructive heuris-
tic, combined with using the DRL as an improvement heuristic. Preliminary results
show HGE improves learning efficiency. When the optimal policy is unknown, TD3
agents trained in centralized multi-facility setting outperform all other tested ap-
proaches.
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Abstract

This work concerns a discrete-time dynamic lot size model with dy-
namic pricing and pricing lag effects. This effect corresponds to the ten-
dency of customers to stockpile a product when it is offered for cheap,
causing demand to increase in the time period with a lower price, while
it decreases in subsequent periods. Having non-zero production incurs a
setup cost.

The problem consists of deciding, for each time period, whether one
should produce, how much to produce, and which price to set. The
objective is to maximize total profit, which is defined as total revenue
minus total setup cost, inventory holding cost and production cost.

The problem is time-consuming to solve using a general solver. Mak-
ing the assumption that prices can be chosen from a discrete list, a
dynamic programming algorithm is presented, which solves the problem
with discrete prices to optimality. This solution method can be used as
a heuristic for the continuous problem.

Introduction

We consider a decision maker selling a product, whose goal is to decide prices
throughout a discrete planning horizon in order to maximize his or her total profit,
given as total revenue minus total production cost (and for model 2, we also include
total setup cost and inventory holding cost). Prices may be chosen from a prede-
termined list of options. These price options may be different in each time period,
and the number of options in each time period may vary. Demand is a function of
the price in the same period, as well as in previous periods.
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Problem variations

Model 1 - pure pricing, one lag period

We consider three versions of the above presented problem. Model 1 is the simplest
model, in which one must decide on a price in each period, in order to maximize total
profit, given as total revenue minus total production cost. Demand is a function of
the price in the current period and the price in the previous period, and production
is assumed to occur in every period.

Π = total profit

dt = demand in period t

pt = price in period t

ct = marginal production cost in period t

Pt = set of allowed prices in period t

max Π =
T∑
t=1

dt(pt − ct) (28)

subject to

d1 = f1(p1) (29)

dt = ft(pt−1, pt), t = 2 . . . T (30)

pt ∈ Pt, t = 1 . . . T (31)

The objective function (28) represents the sum of revenue minus production costs
for all time periods. Constraints (29)-(30) define demand in period 1 as a function
of its price, and demand in other periods as a function of prices in the same period
and the previous period. Constraint (31) enforces that prices are chosen from the
predetermined set of allowed prices.
We model this problem as a longest path problem on a layered network, see figure
1. Nodes are divided into T disjoint sets, not including the source and sink nodes.
Each node represents a pricing decision, and travelling along an arc from one node to
another rewards a nonnegative profit. Travelling to the sink node gives zero profit.
The objective is to find the longest path from the source node o to the sink node s.
Such a network problem has already been treated in the literature. See [1] for
a backwards dynamic programming algorithm that solves a similar shortest path
problem to optimality in O(|A|) time, where A is the set of arcs. We present a
similar, forwards algorithm which also finds the optimal solution in O(|A|) time.
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Figure 1: Graph representation of model 1.

Model 2 - pricing and setup, one lag period

In model 2, we add setup decisions to model 1. Production only occurs in periods
in which setup occurs, and having setup incurs a given cost, regardless of amount
produced. Product may be held in inventory between periods, also at a cost.

xt = units produced in period t

ht = cost of holding one unit of inventory from period t to the next

It = units held in inventory from period t to the next

st = setup cost in period t

yt = equals 1 if setup occurs in period t; zero otherwise

i0 = initial inventory

M = a big number

max Π =
T∑
t=1

(dtpt − ctxt − styt − htIt) (32)

subject to (29)-(31) and

xt + It−1 − It = dt, t = 1 . . . T (33)

xt ≤Myt, t = 1 . . . T (34)

I0 = i0 (35)

yt ∈ {0, 1}, t = 1 . . . T (36)

xt, It ≥ 0, t = 1 . . . T (37)

The objective function (32) is the difference between total revenue and total pro-
duction, setup and inventory holding cost. Constraint (33) is the inventory balance
constraint, constraint (34) enforces no production without setup, and constraint (35)
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sets initial inventory to its appropriate value. Finally, constraints (36)-(37) are the
binary condition on the setup variable and non-negativity conditions on production
and inventory.
Under the assumption of Wagner-Whitin costs, we present a dynamic program-
ming algorithm to solve this problem to optimality in O(T 2K3) time, where K =
max(|Pt|), the highest number of prices in any period.

Model 3 - pure pricing, multiple lag periods

Model 3 is an extension of model 1 in that demand is a function of prices in any
number of preceding prices, not only one. The objective functions in the two models
are the same, see (28), as well as the constraint ensuring that prices are discrete,
see (31). Constraints (29)-(30) are replaced by, respectively,

dt = ft(p1, p2, . . . , pt−1, pt), t = 1 . . . q (38)

dt = ft(pt−q, pt−q+1, . . . , pt−1, pt), t = q + 1 . . . T (39)

where q is the number of preceding periods, the prices of which influence demand
in the current period.
Unfortunately, the number of combinations of preceding prices for the demand func-
tion is bounded by Kq, and even calculating every possible value of a demand func-
tion is exponential in complexity. This makes it difficult to avoid such complexity in
an exact solution algorithm. However, by making assumptions on the nature of the
demand function, it is possible to rule out some combinations that will not appear
in an optimal solution. Without assumptions on the demand function, we present
an algorithm that solves the problem to optimality in O(TKq) time.

Perspectives

Although these models were conceived with the intention to describe stockpiling
behaviour in customers, we make no strict assumption on the demand function.
Any demand function may be used, as long as it is a function of the price in the
same period and the prices in some number of preceding periods. This allows for
the use of elaborate, non-linear functions, as well as other types of functions and
customer behaviours not necessarily related to stockpiling. One may also note that,
while prices are assumed to be discrete, these models may be used heuristically on a
problem with continuous prices, in order to find a good, but not necessarily optimal
solution.
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Abstract

We consider the classical capacitated lot-sizing problem which is
known to be NP-hard. Several construction heuristics have been pro-
posed in the research literature, but none of them is convincing in terms
of solution quality and generality – meaning that they can be applied
to different variations of the problem. We propose a general greedy
construction heuristic (GCH). Computational experiments on the single-
level capacitated lot-sizing problem (CLSP) show that GCH outperforms
Dixon-Silver and ABC heuristics. The heuristic can easily be extended
to handle cases with setup times and multi-level product structures.

Introduction

Capacitated lot-sizing problems belong to complex combinatorial problems and it
is usually hard to solve them to optimality or find a good feasible solution by exact
methods. In this regard, a few heuristics were developed over the past 40 years.
The standard CLSP with setup times is formulated as a MIP-problem as follows:

minZ =
T∑
t=1

N∑
i=1

(siYit + hiIit) +
T∑
t=1

coOt (40)

subject to

Iit = Iit−1 +Xit − dit ∀i, t (41)
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N∑
i=1

(Xit + biYit) ≤ Ct +Ot ∀t (42)

Xit ≤ Yit

T∑
τ=1

diτ ∀i, t (43)

Xit, Iit, Ot ≥ 0, Yit ∈ {0, 1} (44)

where the decision variables are lot sizes Xit for item i in period t, setups Yit,
inventory Iit, and overtime Ot. Objective function (40) minimizes the sum of setup,
holding and overtime costs. It is subject to the inventory balance constraint (41),
capacity constraint (42) and setup state constraint (43).
Two well-known construction heuristics for single-level CLSP without setup time
are: Dixon-Silver-Heuristic [1] and ABC-Heuristic [3]. Recently a new extension
of the Dixon-Silver-Heuristic has been proposed where the local decision criterion is
optimized using genetic programming (GP) [2].
A simple heuristic was presented in [5] for the single-level CLSP with setup times.
All mentioned methods are based on (modified) Silver-Meal criterion and create a
production plan stepwise from the first to the last period. They are rather inflexible
because they can hardly be adapted to other lot-sizing problems.
Recently, [4] proposed a simple construction heuristic embedded in a metaheuristic
for the practical lot-sizing problem of a pharmaceutical company. This construction
heuristic is a simple, rule-based method to add new demand to an existing produc-
tion plan. The order in which demand is added to the plan is optimized by a genetic
algorithm. We used that idea to develop a new greedy construction heuristics.

Greedy construction heuristic

In order to solve the CLSP we first sort all non-zero demands dit in an arbi-
trary order, i.e. we generate a so-called demand list of demand elements: Dl =
[di1t1 , di2t2 , di3t3 , . . .].
We start with an empty production plan and add one-by-one the demand elements
to the plan. Let us assume we have given a partial production plan P n−1 =
{Xn−1

it , Y n−1
it , In−1it , On−1

t } up to the (n − 1)-th demand element. In order to in-
tegrate the n-th demand element dintn into the plan we solve the problem (1) - (5)
with the additional constraints:

Xn
jt = Xn−1

jt Injt = In−1jt Y n
jt = Y n−1

jt j 6= i ∀j, t (45)

Constraints (6) ensure that previously taken decisions of setup and production quan-
tities for all items except item i cannot be changed and lead to an easier optimization
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problem but it is not guaranteed that the plan P n is optimal if plan P n−1 was op-
timal. To solve the problem (1) - (6) we consider the following rules in the given
order.
1. Case In−1it > 0 (use inventory). If there is a positive inventory In−1it for
the item i in the period t, it should be used to satisfy (completely or partially)
the demand dintn . Obviously, in the case of using already available inventory no
additional costs will occur that leads to the optimal solution of the subproblem.
However, the inventory is required to satisfy future demand for item i. Therefore, a
new demand element dintn+1 is created and scheduled immediately in order to ensure
the feasibility of the plan. New demand dintn+1 is equal to inventory In−1it which can
be used to satisfy dintn completely or partially. If In−1it < dintn , i.e. demand was
only partially satisfied, then the remaining amount is considered as a new demand
element dintn , which is scheduled according to the following rules.
2. Case Ct −

∑N
i=1X

n−1
it ≥ dintn (everything can be added). Depending on

available capacity in period t, it may be possible to add the whole amount dintn .
Such a decision would either result in no additional cost (if there is already a setup
in period t for item i) or in additional setup cost. Another decision may be to
extend some existing lot(s) in previous periods if this leads to a feasible solution.
This decision would result in additional holding cost. Therefore, we compute the
cost for both decisions and the cheapest one will be realized.
3. Case Ct −

∑N
i=1X

n−1
it < dintn (part or nothing can be added). If available

capacity in period t does not allow to produce whole demand, we have several
possibilities:

1. Add possible amount to t and extend existing lot(s) in previous period(s) to
add remaining amount.

2. Add possible amount to t and create a new lot in previous period to add
remaining amount.

3. Extend existing lot(s) in previous period(s) to add the whole amount.

4. Create a new lot in previous period to add the whole amount.

Each of the above-mentioned decisions in all cases yields a certain cost.
The total cost of adding a new production amount to a period is fourfold. First,
there may be an additional setup cost incurred if there is no lot for item i in the
considered period. Second, there may be an additional holding cost if we add an
amount to the earlier period(s). Additionally, we introduce the shift of existing
lots. This routine is performed while estimating cost for any decision that involves
the creation of a new lot and later while realizing that decision. It may reduce the
total cost of a production plan. We compute two types of possible savings: (1)
we may merge existing lots from previous periods with a later lot and reduce the
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holding cost part and (2) we may merge future lots with an earlier lot and reduce the
setup cost part. Both shift types may also be beneficial in terms of freeing capacity
for future decisions.
The greedy character of the heuristic suggests that we always select the cheapest
option while adding a demand element to a partial production plan. However, in
some cases difference among additional costs does not indicate a clear preference of
a certain decision. Therefore, we postpone adding such a demand element until
there is a change in the plan for the considered item.

Computational experiments

The final plan depends on the order of the demand elements. We have tested various
sorting rules. A period-wise sorting with items sorted according to a combination of
capacity requirement, setup cost and holding cost leads to the best overall results.
We were able to find feasible solutions for all tested instances of CLSP without setup
time and for 95% of instances of CLSP with setup times while using the selected
rules. There is a potential to find feasible solutions for those instances if we use
local search to find a better sorting of the demand elements.
Results of the experiments on 1471 instances of CLSP without setup times report
the average gap to MIP-solutions as 2.21%, whereas ABC-Heuristic leads to 3.71%
average gap and Dixon-Silver-Heuristic to 4.77%. GCH performance is comparable
to the best result of GP method (in both cases the reported average gap is 2.82%
on 540 instances from the validation set).
Results of the preliminary experiments conducted on a sample of instances of CLSP
with setup times report the average gap to MIP-solution as 6.23% for the instances
where a feasible solution was found. [5] reports average gap of 6.46% to the best
solution while finding a feasible solution for 95% of instances during preliminary
experiments.

Conclusions & Outlook

The biggest advantage of GCH is its flexibility as the same design can handle both
CLSP without and with setup times. The nature of the proposed heuristic allows us
to use it as an offline as well as an online algorithm. The results of computational
experiments showed improvement in solutions quality for CLSP without setup times
and the ability to find a feasible good solution for most of the instances of CLSP
with setup times. The current work focuses on finding out which problem charac-
teristics determine the success of a sorting rule for a demand list and the optimal
postponement strategy during the plan construction.
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Abstract

In this research, we investigate the stochastic multi-level lot sizing
problem with a service level. We consider a general setting in which it is
possible to have independent demand for the components as well. The
problem with uncertain demand is modeled as a two-stage stochastic
program considering different demand scenarios. We first consider at all
levels a static strategy in which both the setup decisions and the pro-
duction quantities are determined in the first stage before the demand is
realized. We also model a more adaptive strategy to be more responsive
to the realized demand by considering the production quantities at some
levels as recourse decisions. Through numerical experiments we investi-
gate the value of applying such an adaptive strategy and adding more
flexibility in the system under different settings.

Introduction

Being cost efficient is an important imperative in a competitive business environ-
ment. For manufacturing companies, having an efficient production plan in the
context of material requirements planning (MRP) system is important to minimize
different costs of production and inventory control. In MRP, time-phased produc-
tion and inventory plans are crucial decisions to make a balance between customers’
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demand satisfaction and cost management. While insufficient inventory will lead to
shortage, unnecessary stocks will increase holding cost.
The standard lot sizing problem aims to determine the optimal timing and produc-
tion quantities in order to satisfy a known demand over a finite and discrete time
horizon. One of the extensions to the standard lot sizing problem is to consider
the multi-level product structure which is common in MRP systems. While only
the independent demand exists for each of the products in the single level lot sizing
problem, there is also dependent demand due to the bill of material (BOM) structure
in a multi-level lot sizing problem.
With a BOM structure, the possibility of backlog is only for the independent de-
mand, which is usually defined for the end items. This is due to the fact that to
produce the items at the lower levels, their components need to be available at the
required time, and it is not possible to have backlog for the dependent demand [3].
In this research, we address a more general setting in which in addition to the end
items, each of the components in the BOM may also have an independent demand,
therefore it is possible to have backlog for them due to this independent portion.
This problem has practical relevance in industries with production and aftermarket
services, which require spare parts. A good example is the aerospace industry where,
in addition to the demand for end items, the components also have independent
demand, which has to be taken into account in the planning process.
The demand is often unknown in real-world applications. In MRP systems with
uncertain demand, the calculations are mostly based on the deterministic demand
and the uncertainty is usually reflected in the amount of safety stock which will
be added to the amount of net demand. In this research, we will use stochastic
optimization models to deal with demand uncertainty. In these models the lot sizing
and safety stock level decisions are jointly determined as the demand’s probability
distributions are considered in the model [4].
Different forms of service levels are widely used in the calculations of safety stocks
to deal with demand uncertainty in stochastic lot-sizing problems. However, most
of the research has been focused on the single level problem. As in the BOM it
is not possible to have backlog for the dependent demand, the service levels are
defined only with regard to the independent demand of the end products and the
components. The service level which we consider in this research is closely related
to the δ service level proposed by Helber et al. [2]. Here, instead of limiting average
backlog, we limit the maximum proportion of total backlog to the total possible
backlog over the whole planning horizon.
In the single level lot sizing problem, there are three main strategies to deal with
multi-period lot sizing problems with stochastic demand and these have a different
approach for the setup and production decisions [1]. In the static strategy, the setup
and production decisions will be defined at the beginning of the planning horizon
and they remain unchanged with the demand realization. In the dynamic strategy,
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both setups and production decisions may be modified after the demand realization.
The static-dynamic strategy is in between these two strategies in which the setups
are fixed at the beginning of the planning horizon and the production decisions are
made after the demand realization.
These strategies can also be applied in multi-level lot sizing problems. In the system
in which we have independent demand for the components as well, we can apply
different strategies at different levels in the BOM to increase the responsiveness
in the system, while keeping the nervousness under control. By allowing (some)
production decision to be made in the second stage, we create more nervousness [5],
but we gain more flexibility and hence lower costs.
In this research, we model the stochastic multi-level lot sizing problem as a two-stage
stochastic programming model which is solved using the sample average approxima-
tion (SAA) formulations. The contributions of this research can be stated as follows.
First, we investigate the stochastic multi-level lot sizing problem with service level
constraints. Second, we investigate the value of adding flexibility in production at
different levels for different BOM structures, specially when the independent de-
mand exists at the component level as well. Third, we apply the SAA method to
empirically evaluate the solution quality with different number of scenarios.

Stochastic multi-level lot sizing problem

We propose the mathematical model for the stochastic multi-level lot sizing problem
with a service level constraint. The model is an extension of the model proposed
by Hung and Chien [3] in which for each type of product in the system there is a
different set of inventory balance constraints. In this model, the structure of the
BOM is considered by the successors of each item, which are the direct parents of
the item. The capacity is also defined for each level of BOM separately.
In the first version of the problem, we assume that the strategy is static for all the
items which implies that the setup and production quantity decisions are determined
at the beginning of the planning horizon and cannot be changed when demands are
realized [1]. Figure 1 shows the dynamics of decisions in this problem. The setup
and production, and overtime variables are the first stage variables which will be
defined before the demand realization. After the demand is realized for the entire
planning horizon, the resulting inventory, and backlog quantities for each scenario
are determined in the second stage [2]. In this problem, the model guarantees that,
for each product with external demand, the worst-case ratio of backlog to maximum
possible backlog among all scenarios satisfies the service level.
In the second version of the problem, we will apply a more adaptive strategy for
some products which are managed by the static-dynamic strategy, while all the other
products follow the static strategy. The dynamics of decision is depicted in Figure 2.
In this case, the production decisions of the products under static-dynamic strategy
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Figure 1: Sequence of events for the case without flexibility

Figure 2: Sequence of events for the case with flexibility

become recourse decisions.
Both of these model are approximated using a finite number of scenarios and solved
by the SAA method. Preliminary results for the serial structure show that increasing
the flexibility results in cost reduction, even in the case where there is no external
demand for any of the components. Sensitivity analyses have been performed to
show the effect of changing different parameters on the cost reduction by adding
flexibility and allowing more adaptive decisions.
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The multi-objective stochastic lot sizing problem

(MO-SCLSP)

In lot sizing with stochastic demand, the minimization of operational costs is not
the only conceivable objective. Minimizing the tardiness in customer demand satis-
faction and ensuring production plan stability are no less important. Figure 1 shows
conflicting relationships between those three objectives.

Figure 1: Triangle of tension of stochastic lot sizing

Safety stocks can be produced, which on the one hand buffer against unexpected
high demand realizations. Their production and storage, on the other hand, can
incur additional operational costs, e.g. setup and/or holding costs. A production
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plan determined based on uncertain demand forecasts can turn out to be deficient
for a particular trajectory of demand realizations. In those cases, adjustments of the
production plan are reasonable to adapt the production plan to the actual demand
realizations and therefore reduce expected operational costs and/or tardiness. How-
ever, those adjustments induce system nervousness and therefore shall be limited.
We consider those three objectives in a multi-objective formulation of the stochastic
capacitated lot sizing problem (MO-SCLSP).

Solving the MO-SCLSP with an interactive ap-

proach in multiple decision stages

To allow production plan adjustments, the production plan is revisited periodically
in multiple decision stages as shown in Figure 2.

Figure 2: Solving the MO-SCLSP in multiple decision stages

The first decision is taken in period t1 based on the initial demand forecasts. To allow
the decision maker to make an informed decision, several Pareto-optimal solutions
are required, from which the decision maker selects one based on their preferences.
The selected production plan is executed until the next decision stage and serves as
a parameter for the next optimization. After each ∆ periods, the demand forecasts
are updated to take into account newly observed demand information. Based on the
updated demand forecasts the production plan can be adjusted, if the reduction in
operational costs and tardiness justifies the induced system nervousness.
Figure 3 shows the order of events in each decision stage to determine a set of
Pareto-optimal solutions. With three different scalarization techniques, the con-
ceptionally multi-objective model is transferred into single-objective models. The
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Figure 3: Order of events in each decision stage

optimal solutions of the scalarized single-objective models are also Pareto-optimal
for the multi-objective model.
Ideal values are determined by optimizing just one objective function while neglect-
ing the others. The optimal objective function values under the condition that
another objective function obtains its ideal value is called nadir value. With the ε-
Constraint method, each objective function but one is transferred into a constraint
stipulation minimal aspiration levels of the corresponding objective function values.
The remaining objective function is optimized and therefore the scalarized model
is single-objective. The aspiration levels are varied systematically to derive a set
of Pareto-optimal solutions. In the case of stochastic lot sizing, the minimization
of tardiness and nervousness can be transferred into constraints, leaving the min-
imization of operational costs as the remaining objective function. Finally, with
the Weighted-Sum method, the objective functions are added up to construct a
single-objective scalarized model. By defining weights for each objective function,
preferences among the objective functions can be expressed. The selection of the
weights determines to which Pareto-optimal solution of the multi-objective problem
the solution of the single-objective problem corresponds. In multi-objective lot siz-
ing, tardiness costs and nervousness costs can be specified to construct a scalarized
objective function.
After solving the single-objective problem, the subset of the Pareto-Front outlined
by the Pareto-optimal solutions determined so far is presented to the decision maker.
Based on this impression they can decide if and how additional Pareto-optimal so-
lutions shall be determined. As soon as the decision maker has enough information,
they can select a solution for this decision stage.
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Heuristic approximation of the Pareto-front

As the deterministic CLSP is NP-hard already and the stochasticity complicates
the problem even more, determining Pareto-optimal solutions is computationally
expensive. However, most of the Pareto-optimal solutions are only determined to
get an impression of the objective space, although the corresponding Pareto-optimal
production plan will never be executed. Therefore, it is sufficient to heuristically
determine bounds of the Pareto-front. We present a heuristic approach that allows
determining precise upper and lower bounds. Lower bounds are obtained with a col-
umn generation approach, while upper bounds are determined with a Fix&Optimize
heuristic applied to the reduced problem which can be derived from the terminal
solution of the column generation approach.

0

50

100

150

200

1 0,99 0,98 0,97 0,96 0,95 0,94 0,93 0,92

Unlösbar Unbekannt LösbarUnknownImpossible Possible

Costs

Tardiness

Solving the Dantzig-
Wolfe-Reformulation
with column
generation Solving the reduced

problem with
Fix&Optimize

Figure 4: Approximation of the Pareto-Front

Figure 4 shows an approximate Pareto-front of a bi-objective cross-section of the
Pareto-Front for a fixed level of nervousness. All combinations of the objective
function values worse than the determined upper bound are known to be domi-
nated by another solution. The combinations with objective function values lower
than the lower bound are not obtainable. If the difference of the bounds is small,
the decision maker can identify the interesting regions of the objective space. If
requested, additional computational effort can be spent on tightening the bounds
of the solutions in the interesting region and/or determining additional solutions
in that area. In the presentation, we will show that the proposed heuristic ap-
proach yields strong bounds with significantly lower computational effort compared
to determining Pareto-optimal solutions with an exact approach.
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Abstract

This work addresses the multi-period single-item lot-sizing problem
with backorder under yield uncertainty through distributionally robust
optimization. We rely on Wasserstein ambiguity set to represent the
yield distribution. The resulting approach remains tractable, and it pro-
vides a production plan that remains efficient for any yield distribution
described by this ambiguity set.

1The authors wish to thank the Region Pays de la Loire and the Canada Research Chair in
Supply Chain Analytics for financial support of this research.
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Introduction

In a production planning activity, lot-sizing is the process that determines produc-
tion quantities to meet the demand and minimize global costs. To guarantee the
production of quality goods, the production yield rate measures the expected quan-
tity of non-defective items resulting from a lot size. However, the production system
is surrounded by uncertainties that may impact the quality of these decisions. An
excellent review of the lot-sizing problem with random production yield is presented
in [5]. The main results of this paper are still valid, and the authors emphasize that
most studies are based on strong assumptions about the yield distributions and are
not very adaptable to realistic systems.
Different approaches exist to incorporate uncertainties within optimization models.
While the approaches based on probability distribution become easily intractable
when addressing large size problems, robust methodologies usually fail to consider
realistic scenarios, being often too conservatives [4]. The distributionally robust
optimization (DRO) combines the probabilistic concepts of uncertainty from the
stochastic method with the tractability of the worst-case perspective from the robust
optimization [2, 4]. DRO seeks to immunize the system from the worst-case proba-
bility distribution of the uncertain parameters in the ambiguity set. This ambiguity
set is a family of probability distributions of the uncertain parameter characterized
through partial stochastic information that can be obtained from data [2].
The distribution of the yield rate is typically inferred from historical data, but
predicting true distribution of the production yield is difficult, and it is often ap-
proximated to a stationary distribution (e.g.: binomial, exponential distributions)
[5]. A rather novel ambiguity set, the Wasserstein ambiguity set, was introduced
by Esfahani and Kuhn [3]. Centered on the uniform distribution of S independent
and identically distributed samples, this ambiguity set offers robust solutions with
good performance, and it allows the decision-maker to control the conservatism of
the proposed solution. In this paper, we propose a static robust lot-sizing model
based on the Wasserstein ambiguity set to improve the quality of the production
plan. The resulting method remains robust, computationally tractable, and it al-
lows the decision-makers to control its conservatism by adjusting the radius of the
Wasserstein metric.
The paper is organized as follows: Section describes the considered problem. Section
presents the distributionally robust optimization applied to the lot-sizing problems
with uncertain production yield. Finally, Section gives the main results of this work
and provides some future research directions.
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Problem statement

The single-item uncapacitated lot-sizing problem (LSP) with backorder and pro-
duction yield rate determines the production setup Yt and quantity Xt in a finite
production horizon t ∈ T , to minimize the overall costs, and to meet the demand
dt with quality goods. Given a set of customer demands over a finite horizon, the
problem determines the lot size for each period t to balance the quantity of quality
goods with the backorder and the stock accumulated from previous periods to meet
the demand. However, the quality goods produced can be different from the quan-
tity ordered when the production was released. If the amount of goods available is
insufficient to meet the demand, then the amount of missing goods is backordered.
Any remaining amount of goods after satisfying both the demand of the current
period and backordered, if any, is kept in stock. This deterministic variant of the
problem does not consider uncertainty in the model. It would lead to a suboptimal
or even an unrealistic plan in an uncertain context. To account for uncertain yield,
we integrate stochastic information on the robust formulation through the distri-
butionally robust optimization approach. This problem is handled within a static
framework where all the decisions are defined at the beginning of the production
horizon and remain fixed.

Distributionally Robust Optimization

Based on the definitions given in [3] and the notations presented in [1], we consider
the Wasserstein ambiguity set F given in (46), where P0 is the family of probability

distribution P that can describe the uncertain yield ρ̃, and dW (P, P̂) is the Wasser-
stein metric that measures the distance between distribution P and the empirical
distribution of the production yield P̂.

F =

{
P ∈ P0

∣∣∣∣ ρ̃ ∼ P
dW (P, P̂) ≤ θ

}
, (46)

[3] proof that the worst case expectation for such an ambiguity can be reformu-
lated into a tractable optimization problem. Later, [1] demonstrate that F can be
generalized as an event-wise ambiguity set that describe each possible probability
distribution in P0 as a scenario. Thus, F can be decomposed in ‖S‖ independent
and identically distributed scenarios, such that ρ̂s̃ is the empirical distribution, here
assumed to be the uniform distribution, and u(ρ̃, ρ̂s̃) is the epigraph of the Wasser-
stein metric dW for each scenario s. Then, F can be represented in a lifted format
associated to each scenario s in [S]. For that, we introduce an auxiliary random vari-
able w̃ to express the epigraph u(ρ̃, ρ̂s̃), resulting on the following lifted ambiguity
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set F :

F =

P ∈ P0(R|T |+1 × [S])

∣∣∣∣∣∣∣∣∣∣
(z̃, s̃) = ((ρ̃, w̃), s̃) ∼ P
EP[w̃ | s̃ ∈ [S]] ≤ θ
P
[
ρ̃ ∈ [0, 1]|T | s̃ = s
u(ρ̃, ρ̂s̃) ≤ w̃

]
= 1 ∀s ∈ [S]

P[s̃ = s] = 1
S ∀s ∈ [S]

 , (47)

Assuming F given in (47) we model and implement the LSP under yield uncertainty
through the DRO within a static framework with the help of the python RSOME
library presented in [1]. This library makes it easier to formulate and to solve
the stochastic problem, avoiding modelers to care about the reformulation step,
while it allows them to directly call commercial solvers to compute a solution. Let
g(X, ρ̃) = min

∑
t∈T Ht , the inner function of the problem, be subject to Ht ≥ 0 ,

Ht ≥ ht
[∑t

τ=1(ρ̃τXτ − dτ )
]
, and Ht ≥ −bt

[∑t
τ=1(ρ̃τXτ − dτ )

]
for all period t, where

ht, bt and Ht are the unit inventory, the unit backordering and the inventory control
cost respectively. The DRO model for the LSP with uncertain yield is given as:

min
Y,X

[∑
t∈T

(stYt + vtXt) + sup
P∈F

EP[g(X, ρ̃)]

]
(48)

s.t.

Xt ≤M · Yt t ∈ T
Xt ≥ 0 ; Yt ∈ {0, 1} t ∈ T

Main results and discussion

This paper proposes a static stochastic robust single-item multi-period uncapaci-
tated lot-sizing problem with backordering under yield uncertainty. The presented
model offers a production plan that is robust, while the production system integrates
more stochastic data on the model, and it remains protected from uncertainties. The
model was compared with the classical robust model under the budgeted uncertainty
set. The computational experiments showed that the stochastic robust model can
outperform the robust model, and it achieves satisfactory results that are free of
strong assumptions, even if more stochastic information from available data is taken
into account. Further studies should be carried on to test the quality of the solutions
and the performance and scalability of this model.
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Abstract

The inventory routing problem arises in vendor managed systems,
in which a supplier is responsible for replenishing inventories of prod-
ucts at a set of retailers and manages the logistics over a finite planning
horizon with a fleet of capacitated vehicles. We consider this problem
in the context of the distribution of two different quality products with
one-way product substitution, where the high quality product may be
used to meet the demand for the low quality product. The routes of
vehicles and the quantities of products sent to each retailer in each pe-
riod are determined in such a way that no stockouts occur and the total
cost associated with inventory holding, substitution and transportation
is minimized. In this study, we derive a mixed integer linear program-
ming formulation for the problem, strengthen this formulation with valid
inequalities and develop a branch and cut algorithm as an exact solu-
tion method. We conduct experiments using benchmark and randomly
generated instances to analyze the effectiveness of our solution method
and investigate the relationship between product substitution decisions
and system costs under different demand, supply, vehicle capacity and
substitution cost settings.

Introduction

Vendor managed inventory replenishment (VMI) is a practice in which a central
decision maker (the supplier) is responsible for the replenishment of inventories at
a set of retailers. In VMI, the supplier monitors the inventory level of each retailer
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and decides when and how many products to deliver to each retailer. The inventory
routing problem (IRP) arises in this context and aims to simultaneously optimize
decisions on delivery schedules, replenishment quantities and delivery routes. We
incorporate the product substitution notion into the IRP for two different quality
products, where a high quality product can be used to satisfy the demand for a low
quality product at retailers.
We present a mixed integer programming formulation for the problem and strengthen
it with valid inequalities. We apply these inequalities within a branch-and-cut al-
gorithm. By modifying the benchmark instances in the literature, we generate in-
stances with time dependent supplies and demands for two products. We use these
instances to analyze the benefits of product substitution in decreasing costs. We also
present a computational study to evaluate the effectiveness of our branch-and-cut
algorithm. The results show that substitution is more advantageous when capacity
limitations are tight and demand varies widely between periods.

Problem Definition and Model

The problem is defined on a complete graph G = (V0, E) where V0 = {0, . . . , v} is
the vertex set and E = {{i, j} : i, j ∈ V0, i < j} is the edge set. Vertex 0 represents
the supplier and the other vertices V = V0 \ {0} represent the retailers. There is
a nonnegative traveling cost ce for edge e ∈ E. The deliveries from the supplier to
retailers are made by m identical vehicles, each with a capacity Q. The planning
horizon consists of n periods, T = {1, . . . , n}. There are two products and product
1 has a higher quality than product 2. Each site i ∈ V0 has spi0 units of product
p = 1, 2 in inventory at the beginning of planning horizon and incurs a unit inventory
holding cost hpit in period t ∈ T . A substitution cost fit occurs for each high quality
product used for substitution at retailer i ∈ V in period t ∈ T . The supplier receives
rpt units and retailer i ∈ V demands dpit units of product p = 1, 2 in period t ∈ T .
The storage capacity at retailer i ∈ V is ui. We assume that s1i0 + s2i0 ≤ ui and
d1it + d2it ≤ ui for all i ∈ V and t ∈ T .
To model this problem, we use the following decision variables: xte represents the
number of times edge e ∈ E is traversed in period t ∈ T , yit the number of vehicles
that visit site i ∈ V0 in period t ∈ T , spit the amount of inventory of product p = 1, 2
at site i ∈ V0 at the end of period t ∈ T , qpit the amount shipped from the supplier
to retailer i ∈ V in period t ∈ T , z12it the amount of product 1 used to substitute
product 2, and z22it the amount of product 2 used to satisfy the demand for product
2.
The inventory routing problem with product substitution is formulated as follows:

min
∑
i∈V0

∑
t∈T

(h1its
1
it + h2its

2
it) +

∑
t∈T

∑
e∈E

cex
t
e +
∑
i∈V

∑
t∈T

fitz
12
it (49)
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s.t. sp0,t−1 + rpt =
∑
i∈V

qpit + sp0t p = 1, 2, t ∈ T (50)

s1i,t−1 + q1it = d1it + z12it + s1it i ∈ V, t ∈ T (51)

s2i,t−1 + q2it = z22it + s2it i ∈ V, t ∈ T (52)

z12it + z22it = d2it i ∈ V, t ∈ T (53)

spi0 = spi0 p = 1, 2, i ∈ V0 (54)

s1it + s2it + d1it + d2it ≤ ui i ∈ V, t ∈ T (55)

xt(δ(i)) = 2yit i ∈ V0, t ∈ T (56)

Qxt(E(S)) ≤
∑
i∈S

(Qyit − q1it − q2it) S ⊆ V, t ∈ T (57)

0 ≤ xte ≤ 2 e ∈ δ(0), t ∈ T (58)

0 ≤ xte ≤ 1 e ∈ E \ δ(0), t ∈ T (59)

spit ≥ 0 p = 1, 2, i ∈ V0, t ∈ T (60)

qpit ≥ 0 p = 1, 2, i ∈ V, t ∈ T (61)

0 ≤ yit ≤ 1 i ∈ V, t ∈ T (62)

0 ≤ y0t ≤ m t ∈ T (63)

x and y integer. (64)

Objective (49) minimizes the total inventory holding, transportation and substitu-
tion costs during the planning horizon. Constraints (50)-(52) are inventory balance
equations for products 1 and 2 at the supplier and retailers. Constraints (53) ensure
that the demand for product 2 is satisfied on time using products 1 and 2. Initial
stock levels are set by constraints (54) and maximum levels of inventories at the re-
tailers are imposed by constraints (55). Constraints (56) are the degree constraints.
Constraints (57) are capacity constraints and they eliminate subtours with positive
delivery amounts. The remaining constraints are variable bounds and integrality
constraints.

Inequalities and Algorithm

We propose four new classes of valid inequalities for the IRP with product substitu-
tion. The first class is the variable upper bound constraints for aggregate delivery
amounts. The second class contains the common setup (l, S1, S2) inequalities based
on the inequalities presented by [1] extending the well-known (l, S) inequalities to
the two-item lot sizing problem with separate setups under one-way product sub-
stitution structure. The other classes are the lifted flow cover inequalities that are
valid for our problem if there is a single vehicle. Additionally, to improve the LP
relaxation bound, we adapt the inequalities proposed by [2] for the lot sizing prob-
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lem with Wagner Whitin costs, the rounded capacity constraints proposed by [3] for
the IRP with one product, and the connectivity constraints for the vehicle routing
problems to our problem. We strengthen the Wagner Whitin inequalities and the
capacity constraints by exploiting the logic of variable upper bound constraints.
The proposed branch-and-cut algorithm starts by solving a relaxation of the prob-
lem. The inequalities are added to the relaxation whenever they are violated. If
there is a single vehicle, all valid inequalities are applied at the root node and the
connectivity constraints are used to eliminate subtours; otherwise, all inequalities,
except the lifted flow cover inequalities, are applied at the root node and the capac-
ity constraints are used to eliminate subtours and capacity violations. We use MIP
models, heuristics and exact algorithms to separate the inequalities.

Computational Experiments

We generate two sets of instances for the computational experiments. The first set
employs instances from the IRP literature while the second set employs instances
randomly generated with respect to the same data structure. The instance struc-
ture described by [4] is for a single product problem, with supplies and demands
being time independent during the planning horizon. We introduce new parame-
ters to incorporate the substitution option and time dependency into the instances.
First of all, we assess the effectiveness of the valid inequalities implemented within
the branch-and-cut algorithm. We increase the number of instances that could be
solved to optimality or improve the best bound found within the time limit using
our approach. Secondly, we investigate situations where product substitution is an
effective option and validate potential savings in total transportation and system
costs, including transportation, holding and substitution costs. We show that prod-
uct substitution can lead to noticeable savings in routing and holding costs under
realistic scenarios, when demands and supplies fluctuate between periods and vehicle
capacity is small.
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Abstract

We introduce the consistent multi-plant production routing problem.
In this problem, we are interested in finding minimum-cost production-
routing plans that also meet specific consistency requirements. In this
context, consistency is defined as the degree to which some specified fea-
tures of the solution remain invariant over time. We consider four forms
of consistency, namely: driver, source, product and plant consistency.
In this study we present a mathematical formulation, an exact branch-
and-cut algorithm, and a heuristic solution method for the problem. In
a series of computational experiments we analyze the cost-consistency
trade-off of the solutions, confirming that it is possible to impose consis-
tency without excessively increasing the cost.

Introduction and Problem Definition

Production routing problems (PRPs) are planning problems that integrate several
activities across the supply chain, such as lot-sizing, inventory management, and
vehicle routing. Particularly, the multi-plant multi-product PRP (MPRP) considers
a network with multiple production facilities (plants) and multiple customers that
demand several products over a multi-period discrete planning horizon. The MPRP
consists of determining a minimum-cost production and routing plan defining, for
each period, the setup and production quantities of each product at each plant; the
delivery quantities to each customer from each plant; and the vehicle routes required
to deliver those quantities. This plan must satisfy all the production, storage and
transportation capacities, ensuring that no out-of-stock occurs at any facility. In
the MPRP each plant has its own fleet of homogeneous capacitated vehicles. The
system incurs fixed setup and unit production costs at the plants, as well as unit
inventory holding costs in every facility. Travel cost are incurred with the delivery
routes.
In this study, we address a MPRP for which we are interested in finding minimum-
cost production-routing plans that also meet specific consistency requirements. In



International Workshop on Lot Sizing 2021

this context, consistency is defined as the degree to which some specified features
of the solution remain invariant over time. The concept of consistency in logistics
optimization has drawn significant interest in recent years, mainly because of its
relevance in practical settings. On the one hand, consistency at the customer level,
e.g., reducing the number of different drivers that visit each customer over a certain
period, can increase their satisfaction due to familiarity and customization of the
service, which can, in turn, positively impact the revenues of the company. From
a server point of view, consistency can improve the efficiency of the operations
and increase their productivity, potentially improving the quality of the processes.
For a review of applications in the vehicle routing problem context please see [3].
Applications for inventory routing problems were presented by [1] and [2].
To the best of our knowledge, consistency has not been studied for PRPs. As such,
we propose and study the consistent PRP in a setting with multiple production
plants and multiple products. We refer to this problem as to the ConMPRP. In this
paper, we model the ConMPRP extending the MPRP by considering four forms of
consistency, as follows.

� Driver consistency : in this setting, it is desired that a limited number of
different drivers visits each customer over the planning horizon. Solutions
with this property can lead to enhanced service quality and efficiency since
drivers visit the same customer locations more often.

� Source consistency : this form of consistency favors reducing the number of
different plants from which a specific customer receives its orders over the
entire horizon. The idea is to reduce the variability in the quality of the
products dispatched to each customer by providing solutions in which each
customer receives products from a limited set of plants.

� Product consistency : at each production plant, it is preferred to produce a
limited number of different products throughout the planning horizon. The
idea is to take advantage of limited process flexibility, i.e., reducing the set of
products that each plant produces, to increase their productivity and quality.

� Plant consistency : in this configuration of the problem, it is preferred that
each product is manufactured at a limited number of plants over the planning
horizon. As a result, solutions with this feature might benefit from enhanced
product quality variability.

In the ConMPRP, the different consistency requirements are addressed by defining
a target maximum value for each of the features. These requirements are optimized
simultaneously with the production and routing plan. Specifically, there is a target
value defining the maximum number of different drivers that should visit a customer
over the planning horizon. This value defines the decision-maker’s tolerance in terms
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of driver consistency requirements for each individual customer. Additionally, there
are analogous parameters defining the target maximum number of different plants
that should deliver to a customer, products that each plant should produce, as well
as plants at which each product should be manufactured, over the entire planning
horizon.
In the ConMPRP, we impose these targets as soft constraints, given that enforcing
them as hard constraints may be too restrictive and, in practice, a certain degree
of violation might be acceptable. As such, the violations of the given targets are
penalized in the objective function to favor the finding of solutions considering the
consistency requirements. This type of approach is in line with those used in the
works of [4] and [5], and provides flexibility to the system by giving the decision-
maker the freedom to choose which consistency features to optimize and with what
significance, according to specific situations.

Overview and Main Findings

We first modeled the problem with a vehicle flow-based mathematical formulation.
An exact branch-and-cut algorithm was then presented. In this algorithm, we used
a separation algorithm that solves a series of minimum s− t cut problems to identify
violated subtour elimination constraints. We further strengthened the formulation
with several valid inequalities and defined specific branching priorities for the branch-
and-cut algorithm (instead of using the solver default option).
We also proposed an iterated local search-based heuristic method to solve the prob-
lem. In our implementation, we handle the various decisions of the problem using
different components, embedding the framework within a multi-start approach. In
this context, we use a construction heuristic based on the solution of a production-
distribution formulation, a local search heuristic that explores several routing neigh-
borhoods, and a perturbation procedure that simultaneously changes multiple so-
lution attributes. Also, we use an improvement routine based on a mixed-integer
programming formulation, an intensification operator that employs a state-of-the-art
metaheuristic, and a linear programming model to set the values of the continuous
variables of the problem.
The computational experiments of this study were divided into two parts. The first
one assesses the performance of the proposed solution methods while the second
part focuses on analyzing the impact of taking the consistency features into account
and the trade-offs arising from their inclusion. For our experiments, we generated
a MPRP test set containing 2,208 problem instances, based on benchmark instances
from the PRP literature.
In a first series of experiments we verified that the additional features enhance the
performance of the exact algorithm with regards to the number of instances with
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feasible and optimal solutions as well as to the CPU time required to prove the
optimality of the solutions. The experiments with the heuristic method showed that
it performs robustly for the ConMPRP, the MPRP and the standard PRP. This
assessment was carried out with respect to the exact method for the ConMPRP and
the MPRP, while for the standard PRP we compared against eight state-of-the-art
heuristic methods from the literature.
We also analyzed the trade-off between cost and consistency of the solutions in
the ConMPRP context. To analyze the consistency features of the solutions, we
performed experiments to observe the effect of using different values for the cor-
responding violation penalties. The idea is to verify the change in the cost and
solution structure when altering the relative importance of the consistency require-
ments. The results showed that, in general, it is possible to achieve such trade-offs
without compromising excessively on the cost component. This conclusion indicates
that it is possible to improve the consistency properties of the production-routing
plans at a (relatively) low cost if this is desirable for the decision maker. An excep-
tion to this general behavior is product consistency, for which it might be infeasible
to perform the changes required to significantly improve the solution attributes that
affect it. The results also revealed the significant impact of the first period when
optimizing and measuring the consistency features we studied. In particular, they
showed that low initial inventories at the customer locations can negatively impact
the consistency features of the solutions.
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